
LC-DET-2004-013
physics/0407120

A DAQ System for Linear Collider TPC Prototypes
based on the ALEPH TPC Electronics

M. BALL1, N. GHODBANE2, M. JANSSEN1,3, P. WIENEMANN1

1DESY, D-22607 Hamburg, Germany

2CERN, CH-1211 Geneva 23, Switzerland

3University of Dortmund, D-44221 Dortmund, Germany

Abstract

Within the international studies of a high energy linear electron positron collider, sev-
eral groups are developing and testing prototypes for a Linear Collider TPC. This
detector is planned to be used as a central part in the tracking system of a detector at
such a machine. In this note we describe a DAQ system, which has been developed
for the use in tests of TPC prototypes. It is based on electronics used at the ALEPH
experiment at CERN.

1 Introduction

A large Time Projection Chamber (TPC) is proposed as part of the tracking system for a
detector at the future electron positron linear collider [1]. To meet the different milestones
and requirements, several institutes have started a joint effort to develop a technology
based on the use of micro pattern gas detectors like GEMs or Micromegas instead of the
conventional wire chamber based solution. A powerful but simple DAQ system is needed
at this stage, based on already available technologies, to enable these tests with minimum
effort and expenditure. The DAQ system described in this note is based on the existing
electronics used at the ALEPH experiment at LEP, CERN, for the readout of the ALEPH
TPC.

In this note we introduce the basic concept of the readout system, and discuss in detail
each of the different components.

2 Principle of Operation

The ALEPH TPC DAQ is based on an FADC system. Signals from each channel of the
TPC are sent to a preamplifier, which integrates the charge and converts it into a voltage
signal. The integration time constant can be influenced by a feedback capacitor, and is
set in its default configuration to 2 µs. The signal from the preamplifier is sent to the
digitizer via a twisted pair cable. The first stage of the digitizer is a receiver/shaper
amplifier, followed by an 8-bit FADC, operated at 12.5 MHz. The digitized information is
written into a memory bank, which can keep up to four different events of 512 time slices
each. The basic setup of the system is shown in Fig. 1.

The required performance of a DAQ for the Linear Collider TPC has been summarized
in the TESLA TDR [1]. The requested performance and the relevant parameters for the
ALEPH system are summarized and compared in Tab. 1.

Parameter TDR DAQ ALEPH DAQ
Sampling Speed >20 MHz 12.5 MHz
ADC Range 9 bit 8 bit
Storage Depth 1 ms 512 time slices =̂ 41 µs

Table 1: Table of requirements of the DAQ as specified in the TESLA TDR and as deliv-
ered by the ALEPH based DAQ described in this note.

3 Hardware Setup

The TPC DAQ is based on a combination of FASTBUS technology with VME based read-
out. The digitizer units (TPDs) are realised as FASTBUS modules, through a slightly
modified version of a standard FASTBUS crate is employed. Through a special link (see
below for more details) the FASTBUS crate is controlled and read out from a VME based
CPU. The complete system is controlled by an external computer, running the Linux op-
erating system. In detail the following components are needed to assemble a complete
system (see Fig. 1):

2

Figure 1: Setup à la ALEPH for the TPC.

• One computer operating under Linux (SuSE 7.3 operating system),

• A 6U VME crate with:

– A Fast Intelligent Controller (FIC 8234 [2]), A 68040 VME/VSB dual processor
unit running at 25 MHz.

– A VME/VSB adapter card, Long Distance Adapter LDA 9212 or LDA 9213.

• A modified FASTBUS crate with:

– A FASTBUS to VSB translator unit (FVSBI 9210 [3])

– A set of Time Projection Digitizer (TPD 6821 [4]) modules

– One FASTBUS Adapter Card, FADAP 9211.

• A NIM crate containing several electronic modules for the trigger selection. The
trigger signal has to be converted finally into an ECL signal, which can be used by
the TPD.

In the following sections the way of the signal through the electronic chain is described.
A complete description of the ALEPH TPC electronics can be found in [5].

3.1 The Preamplifier and Shaping Amplifier

Conventional TPCs like that of ALEPH have used a multi-wire proportional chamber
technique to multiply the primary electrons at the endplates. With this method, thin an-
ode wires are mounted just in front of the readout pads. Due to the high electric field in
the vicinity of the wires, electron multipication takes place so that the produced charges
induce measurable signals on the readout pads. Unfortunately this technique leads to a
dependence of the resolution on the projected angle between track and wires. Moreover

3

the electric and magnetic field lines are not parallel close to the wires leading to a signifi-
cant drift velocity component along the ~E × ~B direction. This eventually might limit the
spatial resolution of the chamber. In addition wires and the necessary support structures
add large amounts of material to the endplate, and thus compromize the performance of
the calorimetry in the forward direction.

For the Linear Collider therefore a novel readout scheme for a TPC is proposed, based
on micro-pattern gaseous chambers. In recent years GEMs and Micromegas have been
developed to a point where their use in large scale detectors can be envisioned. Contrary
to the wire chamber readout, TPCs with a GEM or Micromegas based gas amplification
system directly detect electrons produced in the amplification step. Since this signal is
very fast, the parameters of the preamplifiers need to be specially optimized for this situ-
ation.

The input stage of the ALEPH preamplifier is a charge-integrating circuit with a decay
time constant of 2 µs. The effective feedback capacitor is Cf = 1 pF. The charge sensitivity
is determined by the feedback capacitor Cf to be 1 V/pC. For a single pad of size 2 × 6
mm a typical primary electron signal is around 25 electrons. After gas amplification this
translates into a preamplifier output signal of f ·g·q

Cf
≈ 12 mV with the charge collection

efficiency f due to the integration time, the gas gain g, the primary ionization charge q
and the capacitance Cf of the storage capacitor.

The output signal of the preamplifier rises very fast – typical rise times are of the order
of a few tenth of a ns – and then decays exponentially. The shaper symmetrizes the signal
and converts it into a roughly Gaussian shape with a width of about 400 ns. The FADC
then digitizes this signal at 12.5 MHz, resulting in a typically length of 5 time slice samples
for one pulse.

Technically the preamplifiers are connected to the TPDs via twisted pair cables. The
preamplifiers are supplied with power through the signal cables. ± 5 V needs to be sup-
plied either from an external power supply or through a modification of the FASTBUS
crate.

Both the preamplifiers and the shaping amplifiers were produced in thick-film hy-
brid technology. Measurements done at the time of production of the electronics showed
that the gain and the noise of the devices were constant within an RMS of 1.5 % for the
preamplifier gain, ± 5 ns for the FWHM of the output pulses after shaping.

A special FASTBUS module (SMTPD) exists which, apart from other things, provides
the necessary 5 V to a modified FASTBUS backplane, so that the supply voltage can be
applied to the preamplifiers.

3.2 The TPD

In this Section we discuss the Time Projection Digitizer (TPD). A more complete descrip-
tion can be found in [4].

The TPDs are implemented in FASTBUS technology and adhere to the FASTBUS stan-
dard. The modules are controlled through the FASTBUS control bus.

The TPD, originally designed to digitize the signals of the ALEPH TPC, comprises 4
× 16 input channels, each of them built around an 8-bit Flash Analog To Digital Con-
verter (FADC) preceded by a hybridized line receiver/shaper amplifier. The TPD uses
the standard ALEPH TPC preamplifiers as signal sources.

4

The TPD supplies power to the preamplifiers as described in the previous Section.
For testing purposes a specially designed module is available (SMTPD). This module in
addition provides clock, trigger and pulse signals and is primarily used during the testing
and debugging phase of the electronics.

Later during routine operation an external source was used to supply the ± 5 V to the
preamplifiers.

When using old ALEPH equipment special care needs to be taken to make sure that a
properly modified FASTBUS crate is available when the SMTPD modules are used.

3.2.1 Front Panel Input Signals Handling

A TPD accepts three different kinds of input signals:

• The clock (CK) at a frequency of 12.5 MHz, used to sample the signal from the
preamplifiers. The clock has to be a standard NIM signal.

The clock can be either supplied from the SMTPD – which is suitable for a small
number of TPDs – or through an external clock generator. Simple ways of realizing
such an external clock generator are given in the Appendix A to this note.

• The trigger or write signal (WR). The WR signal starts the acquisition procedure of
the FADCs. The WR signal duration must be greater than 512 time slices × the CK
period, i. e. 41 µs.

• The signals from the preamplifiers connected to the pads of the TPC.

Once the TPD gets the WR signal, each of the 64 input signals is passed through the
shaper and the FADC, with a typical sampling time of 80 ns (CK signal). The digitized
information is piped into a buffer which is 512 bytes deep, called the Raw Data Memory
(RDM). Four parallel banks are available, allowing to store up to 4 events in the system
before the events have to be readout into the acquisition computer.

The events stored in the TPD are eventually written into static memory, after applying
some data selection criteria like threshold suppression, pulse time extraction, etc.

3.2.2 Control Status Registers

The full functionality of the TPD is available through various internal 32 bit registers.
These are written and read by the FIC 8234 via the VSB to FASTBUS interface FVSBI 9210.

The TPD implements several control and status registers (CSR). The most relevant
ones, which are used in the acquisition system are:

• CSR#0: This register is a general purpose control and status register implemented
according to the FASTBUS specifications. It contains the TPD module identifier and
the different control bits for proper operations. The CSR#0bit significance is given
in Tab. 2.

• CSR#1 is used for the access and DAQ Bank informations. The CSR#1bit signifi-
cance is given in Tab. 3.

• Two Next Transfer Address (NTA) registers, one for the DATA space and one for
the CSR space.

5

• CSR#0xC0000002 or DAC register implements four 6-bit values, so called DAC
values to set the parameters of each FADC channel. These four values control the
pedestal, linearity and the gain of the TPD.

3.3 The FASTBUS to VME/VSB Interface (FVSBI)

The FVSBI 9210 connects the VME to the FASTBUS, and thus allows the control of the
FASTBUS system. It communicates with the VSB bus using two extension cards, a Long
Distance Adapter card (LDA 9213) which is plugged into the rear of the VSB connec-
tors. A passive adapter, the F-side Adapter (FADAP 9211), is connected at the rear of the
FASTBUS crate to the LDA 9212.

There are two directions of communication. The FIC can control and set all relevant
registers etc. of the TPDs in the FASTBUS crate. After the digitization step, the FIC reads
the memory in the TPDs and transfers the data through the VME crate to the DAQ com-
puter.

4 Acquisition Software Description

4.1 Approach Using the RDM Banks

Each of the 64 8-bit FADCs digitizes the signal from the ALEPH preamplifiers and stores
this event in the so called Raw Data Memory (RDM). A simple approach consists in read-
ing this memory once the digitization is done and apply offline threshold cuts and so-
phisticated algorithms to find the different charge clusters.

This simple approach has been implemented in the acquisition software and the dif-
ferent steps are:

• Initialization of the FASTBUS session.

• Initialization of the FVSBI master (see Section 3.3).

• Loop on the different FASTBUS slots and for each primary address (PA) try to read
the CSR#0, where the identity of the FASTBUS module is written and store the PA
associated with the different modules (TPDs and SMTPDs).

Having the list of TPDs in use, then, for each of them:

• Reset the TPD and all CSRs by setting the CSR#0<30> to 1.

• Set the DAQ bank to be bank 0, 1, 2 or 3 using CSR#1<19:18> .

• Load the DAC values used by the 8-bit FADCs.

• Enable DAC writing by setting CSR#0<12>.

• Loop on the 64 channels and for each of them:

– Define the channel to be loaded in the NTA DATA register NTA DATA<14:09> .

– Load the DAC value in the CSR#0xC0000002 register.

6

– Wait for bit clear of CSR#0<13>.

– Wait a bit that the DAC value loaded is stable.

• Disable the DAC serializing, setting CSR#0<28>.

• Write to the Least Significant Bit (LSB) of CSR#1, CSR#1<00>.

• Enable the DAQ, CSR#0<06>.

• If a new trigger is accepted, then a WR cycle starts and CSR#0<07> goes up to 1.
Then an image of the current number of time samples can be found in the DAQ
counter CSR#1<07:00> .

• The DAQ stops if the DAQ counter reaches 511 and then the CSR#0<07> is reset to
0.

• Disable the DAQ setting CSR#<22>.

• Set the Access Bank to read to be bank 0, 1, 2 or 3 using CSR#1<17:16> .

• Read the data channel by channel or block by block.

4.2 Acquisition Software

The TPD readout has been described in detail in the Section before. The C program
tpcdaq.c is well commented and the names of the different implemented functions are
self-explanatory. In this Section, we list the different implemented functions and summa-
rize briefly their task. These functions are called from the main program TPCAcquire()
and are:

• FastBusInit() : Initializes the FASTBUS session.

• FastBusScan() : Scans the different FASTBUS segments and returns the PA of the
different TPDs and SMTPDs present.

• getFVSBInterfaceNumber() : Returns the FVSBI 9210 interface number set on
the front panel.

• getFastbusModuleID() : Tries to read the CSR#0 at a given PA and decode the
module identity coded in this register.

• FastBusClose() : Finishes the FASTBUS session.

• checkFBError() : Decodes the FASTBUS error if any.

The SMTPD is not crucial for the data acquisition since it can easily be replaced by a
NIM clock module. Nevertheless, as described above, it enables to test and calibrate the
TPD. Thus several functions have been implemented starting from the definition of the
different registers in reference [6]. These functions are:

• SMTPDReset() : Reset the SMTPD.

7

• SMTPDClock() : The clock is not automatically started at the power up of the
SMTPD. this has to be done by software.

• SMTPDSetSource() : The SMTPD can be used as a testing module which generates
the input signals for the TPD. This function has not been tested.

To access the different TPDs several functions have been implemented. These func-
tions are:

• TPDReset() : Reset the TPD module.

• TPDSetDAQBank() : Select one of the four banks to which the sampled event will
be written to.

• TPDSetDAC() : Set the DAC parameters to control the slopes of the different FADC
channels.

• TPDEnableDAQ() : Prepare the TPD for the acquisition of the next event.

• TPDSetDAQ() : Prepare the TPD for the acquisition setting CSR#0<07>.

• TPDDAQActive() : Checks whether the CSR#0<07> set previously is still up. At
the end of the digitization procedure this bit returns to 0.

• TPDWaitForTrigger() : Reads the CSR#1 time slice counter set initially to 1 and
incremented during the digitization of the pulse. At the returns, this reaches 512
time samples.

• TPDDisableDAQ() : Disable DAQ setting CSR#0<22>.

• TPDSetAccessBank() : Set the access bank to one of the four banks, where the
data have been stored during digitization.

• TPDReadFADCCharge() : Read the bank where the raw data are stored.

• TPDReadRDM(): Read the event from the Raw Data Memory (RDM) directly. As
explained above. No selection criteria is applied to the event in the TPD.

The TPD is capable of applying selection criteria to the raw data stored in the RDM.
To do this, several functions have been implemented. These functions are1:

• TPDSetThreshold() : Set the threshold to be used.

• TPDSetLimitRegister() : Set the Limit register to define the cluster (total num-
ber of time slices and number of time slices below threshold).

• TPDDolist() : Start or apply the selection on the data stored in the TPD banks.

• TPDReadHLM(): Read the data stored in the Hit List Memory (HLM) after the se-
lection.

1At the time of writing this note, this part of the system has not yet been extensively tested. Please
contact the authors to find out about the current state of this part of you intend to use these functions

8

The FIC 8234 implements a front panel Input/Output controller, which can be used
to generate e. g. a gate (e. g. with a FLIP/FLOP). Several functions are provided to drive
this controller. These are FPInit() , FPClose() and FPWrite() .

The data read from the TPD by the FIC 8234 can either be stored using NFS or us-
ing the more powerful client/server approach explained below. The drawback of the
first approach is that the FIC 8234 communicates only with one computer, its NFS server,
whereas the second approach enables the FIC to communicate with several computers
which can run reconstruction programs in parallel. Several C functions have been im-
plemented for this purpose. These are NFSFileConnect() , NFSFileDataSend() and
NFSFileDisconnect() for the approach using the NFS transfer protocol and TCPIP-
ClientDataSend() for the TCP/IP client server based solution.

5 Network and Server Configuration

The master processor of the whole data acquisition system is the Fast Intelligent Con-
troller, the FIC 8234. The FIC is operated in diskless mode. This means that upon startup
the operating system has to be loaded through the network from a network disk drive.

The FIC uses the BOOTP and TFTP protocols to find and upload its operating system:

1. The FIC broadcasts a BOOTP request to find a BOOTP server.

2. If a BOOTP server is present it replies to the BOOTP request and sends the network
settings (IP address, gateway address, name server address, TFTP server address,
etc.) to the FIC. Care has to be taken that a proper EPROM is used with an up-to-
date version2.

3. The FIC reboots itself with the settings it has received from the BOOTP server.

4. The next step of the network configuration is that the FIC starts a request for a TFTP
server to load the boot image of the OS-9 operating system.

5. The last step of the configuration is to establish a NFS connection to the Linux PC
to have access to the file space where the acquisition software is located.

The different steps to implement all these technical modifications are presented on the
web page http://www.cern.ch/ghodbane/tpc .

The system has been developed using Linux, SuSE 7.3 professional edition, with the
following software versions:

• Linux Kernel: 2.4.10-4GB.

• BOOTP server: bootp-DD2-4.3-87 (as an RPM).

• TFTP server: tftp-0.20-22 (as an RPM).

• Kernel NFS server and NFS utilities nfs-utils-0.3.1-87 (as an RPM).

Newer distributions should work as well, but have not been tested.
2Older EPROMs send BOOTP requests with 255.255.255.255 as source address. Such packets are ignored

by the BOOTP server. The correct source address is 0.0.0.0. You have to ask CES Electronics to replace OS-
9/68040 2V4 Rev. A2 by OS-9/68040 2V4 Rev. 1.4.

9

http://www.cern.ch/ghodbane/tpc

Figure 2: The client server based data distribution system used by the DAQ system. Data
processed by the FIC CPU are sent to a central data distribution server which in
turn forwards the data to an arbitrary number of clients connected to it.

6 Client Server Based Data Distribution

The data processed by the FIC CPU are sent via a TCP connection to a central data distri-
bution server (DDS) running on a Linux PC. This server forwards all data received from
the FIC to any other clients connected to it. Possible data receiving clients are data writ-
ing programs to make the data persistent, online monitoring software to check the data
quality, etc. In principle an arbitrary number of clients can connect to the DDS. In order
to minimize the load of the FIC CPU and to keep the data transfer through the slow 10
MBit/s connection of the FIC as low as possible, the server does not run directly on the
FIC but on a separate machine. A sketch of the setup is shown in Fig. 2.

6.1 Data Transfer Protocol

The data are sent in chunks as 8 bit char arrays to the DDS. Since all numbers to be trans-
ferred are integers, they are represented either as 8 bit char s or 32 bit int s, depending
on their range. An int is packed into a char array by distributing the 32 int bits over
multiple char s.

At the beginning of each event, a 0x61=’a’ character is sent to indicate the start of
a new event. This is followed by an event number, the UNIX time when the event has
been recorded and the number of TPDs used. These numbers are filled sequentially into
a character array which is transferred to the DDS en bloc. Then for each TPD, the TPD ID
and the number of pulses is filled into a character array and sent to the DDS. The meaning
of ”pulse” depends on the user requirements. It can be just a couple of time slices in a

10

channel which exceed a certain threshold value, but it can also be the full FADC spectrum
of a channel. The latter definition has been adopted as the default setting, i. e. the number
of pulses is equal to the number of channels. The next data to be transferred in a large
array is the contents of each time slice for all the pulses. Finally at the end of each event,
a 0x65=’e’ character is sent to indicate the end of the event.

In order to avoid control characters from being transferred, the protocol works on a
7-bit per character basis. The most significant bit (MSB) of each character is always set
to one3, so that only 7 payload bits remain per character. The only exceptions with MSB
off are 0x61=’a’ and 0x65=’e’ which indicate the beginning and the end of an event,
respectively.

6.2 LCIO Data Writing Client

The developed setup uses LCIO [7], the Linear Collider data model and persistency
framework. A client has been implemented which connects to the DDS and writes the
transmitted data to disk in LCIO format.

The LCIO classes are kept as general as possible in order to avoid any unneeded re-
strictions. The class IMPL::TPCHitImpl provided by LCIO is designed in such a way
that data from both FADC and TDC based TPC readouts can be stored without unneces-
sary overhead. Therefore a FADC specific class called TPCPulse has been added to the
LCIO class collection to allow easy access to all relevant information. This class is defined
in the following way:

#ifndef LCIO_TPCPULSE_H
#define LCIO_TPCPULSE_H 1

#include "LCObjectHandle.h"
#include "IMPL/TPCHitImpl.h"

typedef lcio::LCObjectHandle< IMPL::TPCHitImpl > TPCHitImplHandle ;

class TPCPulse : public TPCHitImplHandle {
public:

TPCPulse(DATA::LCObject *lcObj) : TPCHitImplHandle(lcObj) {;}
TPCPulse(IMPL::TPCHitImpl *lcObj) : TPCHitImplHandle(lcObj) {;}

virtual ˜TPCPulse() {;}

int getNBins() const { return _lcObj->getNRawDataWords() - 1; }
int getTime(int bin) const { return _lcObj->getRawDataWord(0) + bin; }
int getCharge(int bin) const { return _lcObj->getRawDataWord(bin + 1); }
int getTPDID() const { return _lcObj->getCellID() / 100; }
int getChannel() const { return _lcObj->getCellID() % 100; }

void setPulseSpectrum(int tpd, int channel, int time0,
const int* charge, int nbins){

lcObj()->setCellID(tpd * 100 + channel);
int* a = new int[nbins+1];
a[0] = time0;

3Note that all control characters have a MSB set to zero.

11

Figure 3: A screen shot of the control window of the LCIO Data Writing Client.

for (int i=0; i<nbins; i++) a[i+1] = charge[i];
lcObj()->setRawData(a, nbins+1);
delete[] a;

}

};

#endif

A screen shot of the program control window is shown in Fig. 3. In addition to the data
from the readout electronics, important run parameters like cathode voltage, magnetic
field value etc. can be given. They are stored in the run description string4 available in
each LCIO run header. The file name prefix provided by the user is used to compose
the data file name. It has the following components: prefix.YYYYMMDD.XXX.slcio .
YYYYMMDDis the date when the run has been started and XXXa serial number starting
from 000 . Every 1000 events a new file is created and its serial number is increased by
one.

Data recording is started by pressing the start button. Only after the start button has
been pressed, an LCIO file is opened and a TCP connection to the given server and port
is established. A run can be stopped by pushing the stop button which closes the LCIO
data file and the TCP connection to the DDS.

4Each field is separated by a ”|”. Therefore a ”|” should not be contained in the entered string to avoid
confusion.

12

7 Summary and Conclusion

A DAQ has been developed which is based on existing hardware which was used in
the ALEPH experiment at LEP. The DAQ offers a low-cost solution to the need of hav-
ing DAQ systems of intermediate power available during the R&D phase for a LC TPC.
The DAQ offers reasonable performance, and can be used to study setups of reasonable
complexity.

It is clear however that this DAQ system can not be considered as a prototype for
the eventual acquisition system a the LC TPC. Acquisition speed, package density are
too low, the power consumption is much too high for this. Significant R&D is needed to
develop and design a powerful yet compact readout system for a future LC TPC.

8 Acknowledgments

We are grateful to B. Jost, B. Lofstedt and R. Schuler for their valuable help. We also wish
to express our gratitude to F. Gaede. Working closely together made the rapid inclusion
of the TPCHit classes into LCIO possible. In addition we would like to thank T. Behnke
for reading the manuscript and providing fruitful comments. We strongly encourage the
R&D groups to systematically write such a note where they clearly describe how they
have built the setups.

References

[1] T. Behnke, S. Bertolucci, R.-D. Heuer, and R. Settles, TESLA
Technical Design Report, DESY 2001-011 and ECFA 2001-209,
http://tesla.desy.de/new pages/TDR CD/start.html

[2] FIC 8234, Dual 6804 Fast Intelligent Controller, User Manual, Version 2.0, C.E.S. SA.

[3] FVSBI 9210, FASTBUS to VSB Interface, User Manual, Version 0.4, C.E.S. SA.

[4] B. Lofstdet, TPD, Time Projection Digitizer, User Manual.

[5] C. Bowdery et. al., The ALEPH Handbook 1995, Volume 1, 1995, 123-176.

[6] G. Schuler, A Source Module, SMTPD, for the ALEPH Time Projection Digitizer,
User Manual.

[7] F. Gaede, T. Behnke, N. Graf, T. Johnson, LCIO – A persistency framework for lin-
ear collider simulation studies, LC Note LC-TOOL-2003-053, Project Home Page:
http://lcio.desy.de

A Building a Simple External Clock Generator

A simple external clock can be built using a dual gate generator. The setup described in
this note has been tested with a LeCroy NIM Module, model 222. The required cabling
for such a clock is shown in Fig. 4.

13

http://tesla.desy.de/new_pages/TDR_CD/start.html
http://lcio.desy.de

Figure 4: Setup of an external clock generator using a dual gate generator.

Bit Read Significance Write Significance
00 Error flag set error flag
04 Serialize (SR) assertion enabled Enable SR assertion
05 SR asserted
06 DAQ enabled Enable DAQ
07 Status DAQ active
08 Status Dolist active enable Dolist
09 Status hit counter overflow
11 Test input enabled
12 Digital to Analog Converter (DAC) enabled Enable DAC writing
13 Status DAC serial load
20 Disable SR assertion
21 Reset serialize (SR)
22 Diable DAQ
24 Disable Dolist
28 Disable TEST input
29 Disable DAC serial load
30 Reset module (including CSR)
31 Reset registers and counter but not CSR

Table 2: CSR#0 bit assignement

14

Bit Significance
08:00 DAQ counter
17:16 Access bank
19:18 DAQ bank

Table 3: CSR#1 bit assignement

Bit Read Significance Write Significance
30 Reset the SMTPD

31:16 Module identifier: 0x6917

Table 4: CSR#0 bit assignment for the SMTPD

Bit Read Significance Write Significance
07:00 Pulse amplitude value

Table 5: CSR#1 bit assignment for the SMTPD

Bit Read Significance Write Significance
06 CP out enabled Enable CP generation
07 Signal pulse enabled Enable signal pulse
08 Pulse routed to channel output Route pulse to channel output
13 CP internaly generated Enable internal CP oscillator

Table 6: CSR#2 bit assignment for the SMTPD

15

	Introduction
	Principle of Operation
	Hardware Setup
	The Preamplifier and Shaping Amplifier
	The TPD
	Front Panel Input Signals Handling
	Control Status Registers

	The FASTBUS to VME/VSB Interface (FVSBI)

	Acquisition Software Description
	Approach Using the RDM Banks
	Acquisition Software

	Network and Server Configuration
	Client Server Based Data Distribution
	Data Transfer Protocol
	LCIO Data Writing Client

	Summary and Conclusion
	Acknowledgments
	Building a Simple External Clock Generator

